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Chapter 1

Introduction

Galilean relativity, in 17th century, explained for the first time how velocities and
spaces are not absolute; but in 1905, for the first time, a man called Albert Einstein
proved that time was not absolute as well, pushing even further the meaning of
measurements in physics and our understanding of the world. In this paper our
goal will be to deeply explain the nature of events and their properties in relation
to space and time, analyzing the consequences of Einsteins work.

1.1 Physics prerequisites
The following article is aimed at people who have already come into contact with
the basics of special relativity. In particular, the following points must be fully
comprehended in order to grasp the rest of the paper:

• First Postulate of Special Relativity : All (inertial) systems of reference are
equivalent with respect to the formulation of the fundamental laws of physics.

• Second Postulate of Special Relativity : The speed of light, in empty space,
is the same for all observers (c = 299792458m

s
).

• Time dilation and length contraction equations:

∆t = γ∆τ =
1√

1− (v
c
)2

∆τ (1.1)

∆σ = γ∆s =
1√

1− (v
c
)2

∆s (1.2)
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CHAPTER 1. INTRODUCTION

• Lorentz Equations:

x = γ (x′ + vt′) (1.3)

t = γ

(
t′ +

vx′

c2

)
(1.4)

t′ = γ
(
t− vx

c2

)
(1.5)

or equivalently

∆x = γ (∆x′ + v∆t′) (1.6)

∆t = γ

(
∆t′ +

v∆x′

c2

)
(1.7)

Comparing equation 1.1 with 1.6, and 1.2 with 1.5: ∆t → ∆t, ∆τ → ∆t′; ∆σ → ∆x,
∆s → ∆x′.
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Chapter 2

Simultaneity’s paradoxes

Definition: We say that two events E1 and E2, which occur respectively on the
points P1 and P2, are simultaneous if the light beams emitted by the two points
arrive at a midpoint M at the same time.

In fact, referring to the second postulate of special relativity, we know that the
speed of light, in empty space, is the same for all observers. Therefore:

c =
P1M

∆t1

c =
P2M

∆t2
P1M = P2M

⇒


P1M

∆t1
=
P2M

∆t2
P1M = P2M = dM

⇒ dM
∆t1

=
dMx

∆t2
⇒ ∆t1 = ∆t2

(2.1)

P2P1
.
M

. .

Figure 2.1
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CHAPTER 2. SIMULTANEITY’S PARADOXES

2.1 Einstein’s train paradox
Einstein’s train paradox is the most famous example of how simultaneity of events
in general relativity becomes relative. In this paradox we imagine two light bolts
hitting two different points P1 and P2 in the train track at the same instant, as
shown in figure 2.2.

We also imagine two observers, one watching the train from the ground at a
given point M and another one sitting on the train at a given point M ′, assuming
that, in the track’s reference, they are initially equidistant from the points P1 and
P2.

Observer M is hit by the light of the light bolts at the same time, but observer
M first perceives the light source it is going against by moving.

M

M’

P1 P2

Figure 2.2

This paradox though, may give the idea that the events are relative only by
an optical illusion, but again, the events observed by M ′ not only appear optically
different, for that observer they actually happened at different times.
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2.1. EINSTEIN’S TRAIN PARADOX

2.1.1 Train track’s reference frame

As we already said, in the train track reference the two light bolts fall at the same
time in the instant, which we will call t0, when the pointsM andM ′ are overlapped
and equidistant from the points P1 and P2, so that P1M = P2M = P1M ′ = P2M ′,
as shown in figure 2.2.

The light emitted by the two light bolts starts travelling heading towards M
and M ′. While M stays still in his reference, M ′ instead travels ahead the light
emitted by the P1’s light bolt and away from the light emitted by the P2’s light
bolt.

This results in the observer M ′ seeing before the P2’s light bolt and after the
P1’s light bolt, as shown in figures 2.3, 2.5; the observer M instead, as we expect
from equation 2.1, sees the two light bolts at the same time (figure 2.4).

M

M’

P1 P2

Figure 2.3
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M’

MP1 P2

Figure 2.4

M’

MP1 P2

Figure 2.5
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2.1. EINSTEIN’S TRAIN PARADOX

2.1.2 Train’s reference frame

Now we imagine the same situation in the train’s reference frame.

In this reference, the train, and so the observer M ′, stays still and the rails,
and so the observer M , travel at a relative speed v to the left, as shown in figure
2.6.

M’

MP1 P2

Figure 2.6

At a certain instant, which we are going to call t′0,2, the P2’s light bolt happens
in the train’s reference frame and its light starts spreading towards M and M ′

(figure 2.7).

Due to the Second Postulate of Special Relativity the points P2 and P1 will be
the center of their respective rays of light’s propagation only in the instant they
emit them.
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M’

MP1 P2

Figure 2.7

Now the P2’s light bolt’s light will spread until it reaches M ′ (figure 2.8).

M’

MP1 P2

Figure 2.8
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At a certain instant, which we are going to call t′0,1, the P ′
1’s light bolt happens

in the train’s reference frame (figure 2.9).

M’

MP1 P2

Figure 2.9

Then the P2’s light bolt’s and the P ′
1s light bolt’s lights will reach M together.

M’

MP1 P2

Figure 2.10
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Finally the P ′
1s light bolt’s light will reach M ′.

M’

MP1 P2

Figure 2.11

So we can conclude that also in the train’s reference frame the two events won’t
be seen simultaneously by the observer M ′, while they will be seen simultaneously
by the observer M .

If this statement couldn’t be true it would mean that non only the timing of the
events, in different reference frames, is different but also that the existence of the
single event itself would be different, meaning that an event which, for example,
exists for the train doesn’t exist for the rails, and that is impossible.

The order of these events may variate in relation with the relative speed and the
length of the train but the event shown in figure 2.10 will always happen between
the events shown in figure 2.8 and figure 2.11.
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2.1. EINSTEIN’S TRAIN PARADOX

2.1.3 Determining the time interval measured by the train
track

Let’s now calculate the time interval ∆t that exists between the two events in the
train’s track reference frame.

We set in the train’s track reference a system of coordinates positive towards
right with his origin in M .

In the first place it will be necessary to determine the equation of motion, in
the reference of the train track, of the ray of light coming from P2:

X2(t) = −ct+ d

The equation of motion, in the reference of the train track, of the ray of light
coming from P1 is:

X2(t) = ct− d

Where d is the distance P2M = P1M = measured in the train track reference
frame.

Finally the equation of motion, in the reference of the train track, of the point
M ′ is:

XM ′(t) = vt

Therefore, the ray of light coming from P2 reaches M ′ if:

−ct2 + d = vt2 ⇐⇒ t2 =
d

c+ v

And the ray of light coming from P1 reaches M ′ if:

ct1 − d = vt1 ⇐⇒ t1 =
d

c− v
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Now let’s calculate the interval ∆t = t1 − t2 that passes between the instant
t2, when the P2’s light bolt’s light reaches M ′ in the train track’s reference frame,
and the instant t1, when the P1’s light bolt’s light reaches M ′ in the train track’s
reference frame.

∆t =
d

c− v
− d

c+ v
=
d(c+ v)− d(c− v)

c2 − v2
=
dc+ dv − dc+ dv

c2 − v2

=
2dv

c2(1− v2

c2
)

= γ2
2dv

c2

So in the train track’s reference frame the two events happen in the train with
a ∆t:

∆t = γ2
2dv

c2

2.1.4 Determining the time interval measured by the train

Let’s consider now the same situation in the train’s reference frame.
Using the Lorentz Equations for time (1.5) we can determine the previously

named t′0,2 and t′0,1 which are respectively the instants when the P2’s light bolt and
the P1’s light bolt happen in the train’s reference frame:

t′0,2 = γ
(
t0,2 −

x2v

c2

)

t′0,1 = γ
(
t0,1 −

x1v

c2

)
We know that both light bolts happen at the same time in the train track’s refer-
ence frame, so t0,2 = t0,1 = 0.

We also know that the x2 and x1 coordinates of both the light bolts are respec-
tively equal to +d and −d, in the train track’s reference frame.

So we can write:

t′0,2 = γ

(
0− dv

c2

)
⇐⇒ t′0,2 = −γ dv

c2
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t′0,1 = γ

(
0− −dv

c2

)
⇐⇒ t′0,1 = γ

dv

c2

Now we can calculate the interval ∆t′ = t′0,1−t′0,2, in the train’s reference frame,
between the two events.

∆t′ = γ
dv

c2
−
(
−γ dv

c2

)
= γ

2dv

c2

Now we start noticing some similarities between ∆t and ∆t′.
We have to remember that ∆t′ is the interval between the two events in the

train’s reference frame and it is equal to, due to the equation 2.1, the interval
between the instants in which P2’s light bolt’s light and P1’s light bolt’s light
reach the observer M ′, also measured in the train’s reference frame; ∆t instead is
the same interval but measured in the train track’s reference frame.

So we can state that ∆t′ is a proper time while ∆t is a non proper time.
Given that we can use the equation of time dilatation (1.1):

∆t = γ∆t′ ⇐⇒ γ2
2dv

c2
= γ

(
γ

2dv

c2

)
⇐⇒ 1 = 1

This means that actually two events that are simultaneously for a reference
frame are not simultaneous for another reference frame which is moving relatively
to the first one and that the interval between the light emitted by the two events
reaching the moving observer measured in the first reference frame is actually the
dilated time interval, measured in the moving reference frame, with which the two
events happen.
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2.2 Einstein’s train paradox, light sensors’ varia-
tion

At this point we will provide an equivalent version of the previous paradox, useful
for understanding the phenomenon. Instead of thunderbolts we will use two light
sensors, located on the train tracks at points A and B. When the front wheel of
the train passes over point B and the rear wheel passes over point A, the light
sensors emit a beam of light which is directed towards point M, equidistant from
both ends. Let’s see what happens in the two different reference frames:

• The train track reference frame;

• The train reference frame.

They are presented on the next page.
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2.2. EINSTEIN’S TRAIN PARADOX, LIGHT SENSORS’ VARIATION

2.2.1 Train track’s reference frame

We are now in the train track’s reference frame.
The train moves to the right with a relative speed v. Its wheels, which we will

call A′ and B′ respectively, are approaching points A and B, as shown in figure
2.12.

It is important to remember that, in the track reference, AM = BM = A′M ′ = B′M ′.
Where M ′ is the midpoint of A′B′.

A’ B’

A BM

M’

Figure 2.12
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The train passes over points A and B and, as stated above, the wheels of the
train, or points A′ and B′, will coincide for an instant with points A and B of the
tracks.

A B

A’ B’

M

M’

Figure 2.13

In this instant the light sensors emit their signal directed towards the point M
of the rails, as shown in figures 2.13; 2.14; 2.15.

20



2.2. EINSTEIN’S TRAIN PARADOX, LIGHT SENSORS’ VARIATION

A’ B’M’

A BM

Figure 2.14

A’ B’M’

A BM

Figure 2.15

As it is possible to see, the two events, that are the emission of the two light
signals, are simultaneous in the reference system of the train tracks. In fact, the
space that the light will have to travel will be the same in both cases and therefore
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the time taken to travel this space will also be the same. Ultimately the two events
satisfy the definition of simultaneity presented in 2.1.

2.2.2 Train’s reference frame

Now it is necessary to imagine the same situation in another reference frame, the
train’s reference frame.

In this reference the train is stationary, and it is the rails that move at relative
speed v to the left, as shown in figure 2.16

Furthermore, the rails themselves will be shortened, due to the equation of
space contraction presented before (1.2).

Therefore the equality AM = BM = A′M ′ = B′M ′ will no longer be true.
There will not be an instant where points A and B will coincide with points

A′ and B′ respectively.

A’ B’

A BM

M’

Figure 2.16

Instead, initially it will be the front wheel of the train (B′) to pass over point
B, triggering the light sensor which will send the signal to the centerM ′, as shown
in figure 2.17.

22
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A’ M’

A BM

B’

Figure 2.17

The signal will be propagated until it reaches the center (figure 2.18)

A’ M’

A BM

B’

Figure 2.18

After a certain time interval ∆t also the rear wheel (A′) will pass over the point
A, triggering the light sensor which will send the signal to the centerM ′, as shown

23
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in figure 2.19.

M’

A BM

B’A’

Figure 2.19

The signal will be propagated until it reaches the center (figures 2.20, 2.21)

M’

A BM

B’A’

Figure 2.20
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2.2. EINSTEIN’S TRAIN PARADOX, LIGHT SENSORS’ VARIATION

M’

A BM

B’A’

Figure 2.21

The two events do not respect the definition of simultaneity (2.1), as the two
signals transmitted by the light sensors arrive at different instants.

Therefore the two events, in the train’s reference frame, are not simultaneous.

2.2.3 Determining the time interval measured by the train
track

Let’s now calculate the time interval ∆t that exists between the two events in the
train track’s reference frame.

In the first place it will be necessary to determine the equation of motion, in
the reference of the train track, of the ray of light coming from A′:

XA′(t) = ct

The equation of motion, in the reference of the train track, of the ray of light
coming from B′ is:

XB′(t) = −ct+ l

25
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Where "l" is the length of the train in the train track’s reference frame, and
lγ = L is the length of the train in the train’s reference frame.

Finally the equation of motion, in the reference of the train track, of the point
M ′ is:

XM ′(t) = vt+
l

2

Therefore, the ray of light coming from A′ reaches M ′ if:

ct = vt+
l

2
⇐⇒ t =

l

2(c− v)

And the ray of light coming from B′ reaches M ′ if:

−ct+ l = vt+
l

2
⇐⇒ t =

l

2(c+ v)

We will call the first time obtained t1 and the second time t2.
If the two events were simultaneous we should be able to prove that t1 = t2 and
therefore t1 − t2 = 0.
On the other hand, following the previous arguments, we expect to find a time
interval ∆t1 6= 0.
Let’s calculate it.

t1 − t2 =
l

2(c− v)
− l

2(c+ v)
=

+lc+ lv − lc+ lv

2(c2 − v2)

=
2lv

2(c2 − v2)
=

lv

c2(1− (v
c
)2)

= γ2l
v

c2

We have shown that in the train track’s reference frame the two events are not
simultaneous and that the time interval between the first event and the second is
exactly equal to:

∆t = γ2l
v

c2
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2.2. EINSTEIN’S TRAIN PARADOX, LIGHT SENSORS’ VARIATION

2.2.4 Determining the time interval measured by the train

Now we may consider the same situation in the train’s reference frame.

In this reference we have that AB =
l

γ
=

L

γ2
and A′B′ = L

Let’s consider as the starting instant the figure 2.17, in witch we fix a system
of coordinates positive towards right with his origin in A′.

We proceed by writing the equation of the motion of the points B, A, B′ and
A′ in the train’s reference frame:

XB(t′) = −vt′ + L

XA(t′) = −vt′ +

(
L− L

γ2

)

XB′(t′) = L

XA′(t′) = 0

The event of the light being emitted by the B’s light sensor happens when:

XB(t′B) = XB′(t′B)

Similarly the event of the light being emitted by the A’s light sensor happens when:

XA(t′A) = XA′(t′A)

Now we can solve those equations (2.2.4; 2.2.4):

−vt′B + L = L⇐⇒ t′B = 0

27
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−vt′A +

(
L− L

γ2

)
= 0⇐⇒ t′A =

L

v
− L

vγ2
=
L

v
− L

v

(
1− v2

c2

)
=
vL

c2

So the interval between the two events, which is also, due to the equation 2.1, the
interval between the instants in which B’s light sensor’s light and A’s light sensor’s
light reach the observer M ′, measured in the train’s reference frame equals to:

∆t′ = t′A − t′B =
vL

c2
− 0 =

vL

c2

So we can state that ∆t′ is a proper time while ∆t is a non proper time.

Given that we can use the equation of time dilatation (1.1):

∆t = γ∆t′ ⇐⇒ γ2l
v

c2
= γ

vL

c2

but, by definition, lγ = L

γ
vL

c2
= γ

vL

c2
⇐⇒ 1 = 1

By solving this we demonstrated, again, that actually two events that are
simultaneously for a reference frame are not simultaneous for another reference
frame which is moving relatively to the first one and that the interval between
the light emitted by the two events reaching the moving observer measured in the
first reference frame is actually the dilated time interval, measured in the moving
reference frame, with which the two events happen.
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2.3. CAR AND GARAGE PARADOX

2.3 Car and garage paradox

The car and garage paradox, also known as ladder paradox, is another common
example of the relativity of events, this model is perfectly equivalent to the previous
variation of the Einstein’s train paradox, but in this case we consider only the
triggering events of the two light sensors. In this paradox we imagine a garage of
proper length AB, who sees a car moving at a speed such that the car’s proper
length A′B′ is contracted to exactly AB, since it moves at a relativistic speed
towards the garage (figure 2.22).

A M B

A’ M’ B’

Figure 2.22

For the car though, the garage is shorter than the car, as in its reference frame
A′B′ > AB/γ (figure 2.23).
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A’ M’

A M B

B’

Figure 2.23

2.3.1 The nature of the paradox

The experiment consists on closing for an instant the front gate - equivalent to the
left light sensor - and the back gate - equivalent to the right light sensor - of the
garage at the same time, trying to close the car inside: from the garage reference
frame by hypothesis AB = A′B′ , so that the car perfectly fits inside the garage
(figure 2.24).

But as described before, on the car reference frame we would see the garage
smaller than the car itself: in this case we would expect the car being hit by both
gates, contradicting the events on the other frame leading to a reliability issue
(figure 2.25).
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A M B

A’ M’ B’

Figure 2.24

A M B

A’ M’ B’

Figure 2.25
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2.3.2 Solving the paradox

We must first understand that this situation is based on special relativity’s con-
traction of distances, which is, in turn, the other side of the coin of the contraction
of times. The problem in fact resides precisely in the transition from a refer-
ence frame to the other, and, since every reference frame has its own associated
coordinate system, from a coordinate system to the other.

When we switch between two coordinate systems we use Lorentz Equations, and
in this case we already know by hypothesis how spaces contraction are transformed
between the two, but we still don’t know how time contractions are. In particular,
we can’t just assume by heart that the two-time coordinates of the events of the
doors closing change in the same way; we must consider the possibility that they
could change in different ways, leading to perceived non-simultaneity of the two,
in the car’s reference frame.

The paradox is then solved by realising that for both observers, at a certain
point in time, the head of the car will coincide with the front door, and the tail of
the car will coincide with the back door.
The car reference perceives the events of the closing gates in different times: first,
the front gate closes and opens instantly (figure 2.26), then the car continues to
travel until its tail surpasses the back gate, which closes only after it is left behind
(figure 2.27).

A’ M’

A M B

B’

Figure 2.26
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2.3. CAR AND GARAGE PARADOX

M’ B’

A M B

A’

Figure 2.27

2.3.3 Determining the time interval measured by the car

To determine the time variation ∆t′ between the events shown in figures 2.26 and
2.27 we can just use the Lorenz transformations (equation 1.5) to find the time
of the two events t′1 (figure 2.26) and t′2 (figure 2.27) and subtract them. We will
first assume t1 and t2 (the corresponding time coordinates in the garage’s frame)
as 0 and consider x1 and x2 as the corresponding spacial coordinates of the back
gate (points A and B in figure), with the origins of the coordinate system O set
respectively on point M . We will also assume that the two coordinate systems are
both oriented as the velocity vector of the car.

t′1 = γ
(
t1 −

vx1
c2

)
= −γ vx1

c2
= −γ

v
(
− l

2

)
c2

= γ
vl

2c2

t′2 = γ
(
t2 −

vx2
c2

)
= −γ vx2

c2
= −γ

v
(
l
2

)
c2

= −γ vl
2c2

where l, as in 2.1.3, is the proper length AB of the garage.
We can now conclude that

∆t′ = |t′2 − t′1| =
∣∣∣∣−γ vl2c2

− γ vl
2c2

∣∣∣∣ = γ
vl

c2
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CHAPTER 2. SIMULTANEITY’S PARADOXES

With this final equation we have finally proved that the events are perceived by the
two observers as stretched and staggered with direct proportionality to the relative
velocity v and the distance between the event and the observer. In other words,
for the moving observer, the more an event is distant from him, and the faster he
goes, the more his time will be staggered from the other stationary observer.
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Chapter 3

Chronological order and causality

3.1 Chronological order

Under the same assumptions of section 2.2 we will now suppose that - when the
front wheel of the train passes over point B and the rear one passes over A - the
light sensor in B emits a beam of light with a delay quantified in ∆t with respect
to A, as shown in the following figures.

A B

A’ B’

M

M’

Figure 3.1
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A’ B’M’

A BM

Figure 3.2

Then, clearly, in the train’s track reference frame, the signals will arrive in the
midpoint M in the following order:

1. the signal coming from A (figure 3.3)

and, after ∆t,

2. the signal coming from B (figure 3.4)
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A’ B’M’

A BM

ℰA→M

Figure 3.3

A’ B’M’

A BM

ℰM←B

Figure 3.4

On the other hand, analyzing also in this case what happens in the train from
the point of view of the track reference frame, we can conclude that the light beam
coming from B′ is anticipated of γ2lv/c2 with respect to the beam emitted by A′,

37



CHAPTER 3. CHRONOLOGICAL ORDER AND CAUSALITY

as stated in section 2.2.3. Thus, if ∆t above is such that ∆t < γ2lv/c2 then, in
the train track reference frame, the signals emitted from A′ and B′ will arrive in
the midpoint M ′ in the following order:

1. the signal coming from B (figure 3.5)

and, after γ2lv/c2 −∆t,

2. the signal coming from A (figure 3.6)

The chronological order in the two references is obviously reversed.

A’ B’M’

A BM

ℰM′ ←B

Figure 3.5
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A’ B’M’

A BM

ℰA→M′ 

Figure 3.6

Note that not only the two light beams arrive at the midpoint M ′ reversed
compared to the arrivals on M , in M ′’s reference frame M ′ sees itself struck the
two events in reversed order as well. This tells us that the events arranged on
the temporal line of an observer (the events that occur in the points of space that
coincide with that observer) maintain the same temporal order in any frame of
reference; on the other hand, events that occur in generic points of space-time can
be arranged in an order that varies according to the chosen observer. From this we
can conclude that, in general, both simultaneity and chronological order of events
are dismissed.

3.2 Causality
If it is possible that times of events are actually reversible, what about the principle
of causality so important to philosophers? Can causes and effects really exchange
with each other? In special relativity cause and effects cannot be inverted: the only
reversible events are the ones separated through space, as we saw in the previous
paragraphs, since the mathematical component that allows such thing is vx/c2.
When we talk about causality though, we consider pairs of events that can be
related in two different ways:

• Proper events of a certain medium, such that an event happening to that
object, will later have a consequence on the same object.
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• Events happening on a certain medium, that will later have a consequence
on another medium.

The first case can be demonstrated as follows:

Proof. We consider two generic events E1 and E2 proper of a certain medium, and
in that medium’s timeline, they are ordered such that t′2 > t′1, where t′2 is the
proper time of E2 and t′1 is the proper time of E1. Our goal it so prove that t2 > t1
as well, where t2 and t1 are the corresponding time coordinates of any frame. To
achieve such result, will use again the Lorentz equation of time, where x1 and x2
are the spacial coordinates of the two events in any chosen frame. Note that the
position of E1 and E2 coincide with the position of the medium, since the events
are proper of it.

t′2 > t′1

γ
(
t2 −

vx2
c2

)
> γ

(
t1 −

vx1
c2

)
since γ is always greater than 0, we are free to simplify it

t2 −
vx2
c2

> t1 −
vx1
c2

t2 > t1 −
vx1
c2

+
vx2
c2

t2 > t1 +
v

c2
(x2 − x1)

considering that E1 and E2 coincide with the position of the medium, we can see
that

x2 = x1 + v∆t = x1 + v(t2 − t1)
substituting it inside the previous equation

t2 > t1 +
v

c2
(x1 + v(t2 − t1)− x1)

t2 > t1 +
v

c2
(v(t2 − t1))

t2 > t1 +
v2

c2
(t2 − t1)
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t2 > t1 + t2
v2

c2
− t1

v2

c2

t2 − t2
v2

c2
> t1 − t1

v2

c2

t2

(
1− v2

c2

)
> t1

(
1− v2

c2

)
note that the term

(
1− v2

c2

)
is always greater than 0.

t2 > t1

The second case’s demonstration can be developed similarly to the first one:

Proof. Let E1 be a generic event of space-time and E2 it’s consequence on a certain
medium. In that medium’s timeline, they are ordered such that t′2 > t′1, where t′2
is the proper time of E2 and t′1 is the non-proper time of E1. Again, x1 and x2 are
the spacial coordinates of the two events in any chosen frame.

t′2 > t′1

γ
(
t2 −

vx2
c2

)
> γ

(
t1 −

vx1
c2

)

t2 −
vx2
c2

> t1 −
vx1
c2

t2 > t1 −
vx1
c2

+
vx2
c2

t2 > t1 +
v

c2
(x2 − x1)

in this case x2 can be expressed as follows:

x2 = x1 + w∆t = x1 + w(t2 − t1)

41



CHAPTER 3. CHRONOLOGICAL ORDER AND CAUSALITY

where w is the velocity with which E1 is interfering with the medium, it could be a
signal or an emitted object, anything that would imply the consequence E2. Note
that w can’t be faster than c.

t2 > t1 +
v

c2
(x1 + w(t2 − t1)− x1)

t2 > t1 +
v

c2
(w(t2 − t1))

t2 > t1 +
vw

c2
(t2 − t1)

t2 > t1 + t2
vw

c2
− t1

vw

c2

t2 + t2
vw

c2
> t1 − t1

vw

c2

t2

(
1− vw

c2

)
> t1

(
1− vw

c2

)
again,

(
1− vw

c2

)
is always greater than 0, even if w get’s close to ±c

t2 > t1

Considering events separated throw space, that are not a consequence of each
other, such as in 2.1.2, we can see that the time of the two events t0,1 = 0 and
t0,2 = 0, in the train’s reference frame become respectively

t′0,1 = γ
dv

c2

and

t′0,2 = −γ dv
c2

The time of the two events shifted in a way such that they are equal, but with
opposite signs. We could think that since t′0,2 shifts time with a minus sign, than
the moving observer actually went back in time, but this is not the case: the only
thing that all frames of reference agree on is the occurrence of events, the shift of
times is just a result of different alignments of the different observers.
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Conclusions

In conclusion, simultaneity is not absolute, any observer perceives events with an
order and a separation related to his speed and distance from it’s measurements.

The event’s time variation is explained by equation 1.5, with particular atten-
tion to the member

vx

c2

In Einstein’s relativity, the simultaneity principle becomes relative to the velocity
of the observers. In space-time all objects move carrying a different time, they all
travel at the same speed (through space-time), but not in the same direction.

The orientation of space and time gives us different simultaneity of events, not
just by an optical illusion, but in an actual difference in perspective and perception.

Two observers that move at different speeds have different definitions of space
and time, which causes their space-time axes to be different, and perceive events
differently, but the causality principle remains valid.
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Relativity challenges your basic intuitions that you’ve
built up from everyday experience. It says your experience
of time is not what you think it is, that time is malleable.
Your experience of space is not what you think it is; it can

stretch and shrink.
-Brian Greene
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